Физики научились создавать пригодные для наноэлектроники ленты из графена
22.07.2010:15.32
Графен. Иллюстрация McGill University
Физики разработали новый способ получения графеновых нанолент с гладкими краями и заданными энергетическими характеристиками, что делает их пригодными для создания электронных приборов нового поколения. Работа исследователей опубликована в журнале Nature. Коротко о ней пишет портал Physics World.
Графен - моноатомный слой углерода, обладающий необычными электронными и механическим свойствами. Он был создан в 2004 году. Ученые считают графен перспективным материалом для разработки электронных приборов наноразмера, которые в будущем могут "потеснить" традиционные полупроводниковые приборы. Хотя графен превосходит полупроводники в легкости, прочности и подвижности носителей электрического заряда, он не обладает в естественном состоянии так называемой запрещенной зоной.
Запрещенная зона, или щель, - это разница между максимальной энергией валентных электронов атома (то есть участвующих в образовании химических связей) и минимальной энергией электронов проводимости - тех электронов, которые могут под действием внешнего электрического поля отделиться от своего атома и участвовать в коллективном движении, создавая ток. Ширина запрещенной зоны определяет проводящие свойства материала - поле, приложенное к материалу, чтобы он начал проводить ток, должно сообщать электронам энергию не меньше ширины запрещенной зоны для того, чтобы они смогли покинуть ее. Благодаря наличию запрещенной зоны полупроводники широко .
Для придания полупроводниковых свойств графену его изготовляют в форме тонких лент: благодаря движение электронов по ним ограничено одним направлением, соответственно их энергия имеет строго определенные уровни и запрещенную зону. Раньше для изготовления графеновых лент использовались в основном технологии "сверху вниз": отшелушивание от графеновых массивов или развертывание и разрезание . Неровные края таких лент сильно ухудшают их проводящие свойства и затрудняют исследование и контроль их характеристик.
Новая технология относится к так называемым методам "снизу верх", или химическим методам. На подложку из золота или серебра напыляется слой углеродсодержащих циклических мономеров, которые затем сцепляются в полимеры. Система полимеров подвергается нагреву, в результате чего формируются углеродные ленты толщиной в один атом, ровные или зигзагообразные, в зависимости от состава исходных веществ. Ширина таких лент составляет от 10 до 50 нанометров, а ширина их запрещенной зоны достаточна для задач электроники. Более того, края таких лент ровные, с минимальными включениями сторонних атомов, а это сильно улучшает их проводимость и создает возможность исследования магнитных свойств малоразмерных объектов в зависимости от формы края.
По этой же технологии в будущем ученые планируют изготовлять ленты графена с вкрапленными атомами азота и бора, которые будут создавать дополнительные уровни энергии и варьировать электронные свойства лент, а также получать гетеропереходы - соединенные ленты разной толщины (то есть с разными запрещенными зонами). Все эти структуры могут найти применение в солнечной энергетике и высокочастотных устройствах.
ссылка на источник
Графен - моноатомный слой углерода, обладающий необычными электронными и механическим свойствами. Он был создан в 2004 году. Ученые считают графен перспективным материалом для разработки электронных приборов наноразмера, которые в будущем могут "потеснить" традиционные полупроводниковые приборы. Хотя графен превосходит полупроводники в легкости, прочности и подвижности носителей электрического заряда, он не обладает в естественном состоянии так называемой запрещенной зоной.
Запрещенная зона, или щель, - это разница между максимальной энергией валентных электронов атома (то есть участвующих в образовании химических связей) и минимальной энергией электронов проводимости - тех электронов, которые могут под действием внешнего электрического поля отделиться от своего атома и участвовать в коллективном движении, создавая ток. Ширина запрещенной зоны определяет проводящие свойства материала - поле, приложенное к материалу, чтобы он начал проводить ток, должно сообщать электронам энергию не меньше ширины запрещенной зоны для того, чтобы они смогли покинуть ее. Благодаря наличию запрещенной зоны полупроводники широко .
Для придания полупроводниковых свойств графену его изготовляют в форме тонких лент: благодаря движение электронов по ним ограничено одним направлением, соответственно их энергия имеет строго определенные уровни и запрещенную зону. Раньше для изготовления графеновых лент использовались в основном технологии "сверху вниз": отшелушивание от графеновых массивов или развертывание и разрезание . Неровные края таких лент сильно ухудшают их проводящие свойства и затрудняют исследование и контроль их характеристик.
Новая технология относится к так называемым методам "снизу верх", или химическим методам. На подложку из золота или серебра напыляется слой углеродсодержащих циклических мономеров, которые затем сцепляются в полимеры. Система полимеров подвергается нагреву, в результате чего формируются углеродные ленты толщиной в один атом, ровные или зигзагообразные, в зависимости от состава исходных веществ. Ширина таких лент составляет от 10 до 50 нанометров, а ширина их запрещенной зоны достаточна для задач электроники. Более того, края таких лент ровные, с минимальными включениями сторонних атомов, а это сильно улучшает их проводимость и создает возможность исследования магнитных свойств малоразмерных объектов в зависимости от формы края.
По этой же технологии в будущем ученые планируют изготовлять ленты графена с вкрапленными атомами азота и бора, которые будут создавать дополнительные уровни энергии и варьировать электронные свойства лент, а также получать гетеропереходы - соединенные ленты разной толщины (то есть с разными запрещенными зонами). Все эти структуры могут найти применение в солнечной энергетике и высокочастотных устройствах.
ссылка на источник
< Предыдущая | Следующая > |
---|