PostHeaderIcon Темное вещество

Скрытая масса

Скрытая масса (в космологии и астрофизике также тёмная материя англ. Dark matter, тёмное вещество) — общее название совокупности астрономических объектов, недоступных прямым наблюдениям современными средствами астрономии (то есть не испускающих электромагнитного или нейтринного излучения достаточной для наблюдений интенсивности), но наблюдаемых косвенно по гравитационным эффектам, оказываемым на видимые объекты; невидимая субстанция, составляющая 90% массы Вселенной.

Общая проблема скрытой массы состоит из двух проблем:

* астрофизической, то есть противоречия наблюдаемой массы гравитационно связанных объектов и их систем, таких, как галактики и их скопления, с их наблюдаемыми параметрами, определяемыми гравитационными эффектами; считается, что именно темная материя (скрытая масса) склеивает звезды в галактики.
* космологической — противоречия наблюдаемых космологических параметров полученной по астрофизическим данным средней плотности Вселенной.

Масса скоплений галактик: проблема Цвикки

В 1937 году Фриц Цвикки (Fritz Zwicky) опубликовал работу «On the Masses of Nebulae and of Clusters of Nebulae», в которой на основе наблюдений относительных скоростей галактик в скоплении Волос Вероники на 18-дюймовом телескопе Шмидта Паломарской обсерватории получил парадоксальный результат: наблюдаемая масса скопления (полученная по суммарным светимостям галактик и их красному смещению) оказалась значительно ниже массы скопления, рассчитанной исходя из собственных скоростей членов скопления (полученных по дисперсии красного смещения) в соответствии с теоремой о вириале: суммарная наблюдаемая масса скопления оказалась в 500 раз ниже расчётной, то есть недостаточной, чтобы удерживать составляющие его галактики от «разлетания».

С развитием рентгеновской астрономии в скоплениях галактик было обнаружено рентгеновское излучение горячего (разогретого до температур порядка 106 K) газа, заполняющего межгалактическую среду, — то есть была обнаружена часть скрытой массы таких скоплений. Однако суммирование наблюдаемых масс такого газа с наблюдаемыми массами галактик скопления не дало массы, достаточной ни для удержания галактик, ни для удержания газа в скоплениях.

Гравитационное линзирование фона галактиками и их скоплениями

Одним из косвенных методов оценки массы галактик является гравитационное линзирование ими фоновых (расположенных на линии наблюдения за ними) объектов. В данном случае эффект гравитационного линзирования может проявляться в виде искажения изображения фонового объекта, либо появлении его многократных мнимых изображений. Решение обратной задачи, то есть расчёт гравитационного поля, необходимого для получения таких изображений, позволяет оценить массу гравитационной линзы — скопления галактик. И в этом случае расчётные значения значительно превосходят наблюдаемые.

Природа и состав скрытой массы

Кроме прямых наблюдений гравитационных эффектов скрытой массы существует ряд объектов, прямое наблюдение которых затруднено, но которые могут вносить вклад в состав скрытой массы. В настоящее время рассматриваются объекты барионной и небарионной природы: если к первым относятся достаточно хорошо известные астрономические объекты, то в качестве кандидатов во вторые рассматриваются нейтрино, страпельки и гипотетические элементарные частицы, следующие из классической квантовой хромодинамики (аксионы) и суперсимметричных расширений квантовых теорий поля.

На роль "атомов" темной материи выдвигаются вимпсы. По предположениям ученых (Институт Нильса Бора) темная материя может группироваться в шары диаметром 20 см и массой 100 000 000 тонн.

Массивные объекты гало галактик

Для объяснения отклонения скоростей вращений галактических объектов от кеплеровских следует предположить наличие массивного тёмного гало галактик. К массивным объектам гало галактик (Massive Astrophysical Compact Halo Objects, MACHO) относятся слабоизлучающие компактные объекты, в первую очередь маломассивные звёзды — коричневые карлики, субзвёзды или очень массивные юпитероподобные планеты, масса которых недостаточна для инициирования термоядерных реакций в их недрах, остывшие белые карлики, нейтронные звёзды и чёрные дыры.

Межгалактический газ: Лайман-альфа лес

В отличие от упоминавшегося выше горячего газа галактических скоплений, излучающего в рентгеновском диапазоне, наблюдения спектров квазаров свидетельствуют о достаточно массивных межгалактических облаках водорода. В спектрах квазаров с достаточно высоким красным смещением наблюдается множество смещённых линий («лес» линий) поглощения Лайман-альфа водорода, образованных множеством облаков водорода, расположенных на разном расстоянии по лучу зрения. Такой феномен получил название Лайман-альфа лес (англ. Lyman-alpha forest).

Небарионная тёмная материя

По современным представлениям, только около 4,4 % массы Вселенной составляет обычная барионная материя. Приблизительно 23 % приходится на небарионную тёмную материю, не участвующую в сильном и электромагнитном взаимодействии. Она наблюдается только в гравитационных эффектах.

В зависимости от скорости частиц различают горячую и холодную тёмную материю. Горячая тёмная материя состоит из частиц, движущихся с околосветовыми скоростями, по-видимому, из нейтрино.

Горячей тёмной материи недостаточно, по современным представлениям, для формирования галактик. Исследование структуры реликтового излучения показало, что существовали очень мелкие флуктуации плотности вещества. Быстро движущаяся горячая тёмная материя не могла бы сформировать такую тонкую структуру.

Холодная тёмная материя должна состоять из массивных медленно движущихся (и в этом смысле «холодных») частиц или сгустков вещества. Экспериментально такие частицы не обнаружены.

В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы (Weakly Interactive Massive Particles, WIMP), такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов — фотино, гравитино и др.

Впервые предположение о существовании материи, взаимодействующей с обычным веществом только через гравитацию, было высказано в начале XX века в связи с аномальной прецессией перигелия Меркурия. Однако эта проблема была решена уже в 1916 году Альбертом Эйнштейном благодаря его Общей теории относительности, внёсшей в ньютоновскую теорию гравитации соответствующую поправку на орбитальные движения, исчерпывающе объясняющую наблюдаемое явление, что послужило и первым подтверждением ОТО.

Скрытая масса и космологические параметры: проблема тёмной энергии

Одной из основных проблем космологии является вопрос о средней кривизне пространства и темпе расширения Вселенной. Если кривизна пространства нулевая или отрицательная, то расширение Вселенной происходит неограниченно (плоская и открытая модели Вселенной); если кривизна положительна, то расширение Вселенной должно смениться сжатием (закрытая модель Вселенной). В свою очередь, в рамках общей теории относительности (ОТО), средняя кривизна пространства Вселенной зависит от её средней плотности, нулевой кривизне соответствует критическая плотность Ωcrit ~ 10-29 г/см³, что эквивалентно примерно 5 атомам водорода на м³. Однако, несмотря на то, что наблюдаемое значение средней плотности светящейся материи Ωvis составляет порядка 1 % от критической, данные наблюдений свидетельствуют о том, что кривизна Вселенной близка к нулю, т. е. Ω довольно близко к Ωcrit

В 1917 г. Эйнштейн для обеспечения стационарности (независимости от времени) космологической модели ОТО ввёл космологическую постоянную Λ, действующую в больших масштабах как силу отталкивания, однако в 1922 г. Фридман опубликовал работу по космологической модели нестационарной расширяющейся Вселенной, в которой космологическая постоянная была равна нулю. После открытия Хабблом красного смещения, т. е. космологического расширения, основания для введения космологической постоянной отпали, и сам Эйнштейн в разговоре с Гамовым назвал идею космологической постоянной своим самым большим промахом (biggest blunder) в науке.

Вместе с тем, наблюдения сверхновых типа Ia, проведённые в 1998 г. в рамках Supernova Cosmology Project показали, что постоянная Хаббла меняется со временем таким образом, что её поведение можно объяснить соответствующим подбором величины космологической постоянной Λ, вносящей вклад ΩΛ в среднюю плотность Ω. Эта часть скрытой массы получила название тёмной энергии (dark energy).

Интерпретация данных по анизотропии реликтового излучения, полученных в ходе работы WMAP (Wilkinson Microwave Anisotropy Probe, 2003 г.) дала следующие результаты: наблюдаемая плотность Ω близка к Ωcrit и распределение Ω = ΩΛ + Ωvis + Ωdark по компонентам: барионная материя Ωvis — 4,4 %, тёмная холодная материя (WIMP) Ωdark — 23 %, «тёмная энергия» ΩΛ — 72,6 %.

Состав Вселенной по данным WMAP

Состав Вселенной по данным WMAP

Альтернативы тёмной материи

Есть некоторое количество попыток найти альтернативные тёмной материи объяснения кривым вращения галактик. Они сводятся к изменению законов гравитационного взаимодействия на больши́х масштабах. Одна из самых обсуждаемых альтернатив — теория MOND (модифицированная ньютоновская динамика), изначально предложенная ещё в 1983 году Мордехаем Милгромом как феноменологическое объяснение кривых, но которая, как теперь видно, имела и предсказательную силу для ротационных кривых LSB галактик. Эта теория до недавнего времени не была релятивистской, попытки её релятивизировать включают в себя тензорно-скалярно-векторную теорию гравитации (TeVeS) и модифицированная гравитация Моффата (MOG). Джоэл Бронштейн и Джон Моффат приложили MOG к проблеме ротационных кривых галактик и показали её пригодность для выборки из более чем 100 LSB, HSB и карликовых галактик. Каждая из представленных ротационных кривых галактик подходила без необходимости в скрытой массе, используя только доступные фотометрические данные (звёздное вещество и видимый газ).

Следует, однако, отметить, что MOND и её обобщения являются теориями ad hoc, придуманными исключительно для объяснения ротационных кривых галактик, и они сталкиваются с существенными трудностями при распространении на другие системы. Так, например, перспективы соответствия MOND космологии ранней Вселенной не ясны, а предсказываемые ею профили плотности и температуры горячего газа в скоплениях галактик сильно расходятся с наблюдаемыми.

Источик: википедия

темная материя вселенной

    Комментарии (0)
    Только зарегистрированные пользователи могут оставлять комментарии!
     
    Виды космоса
    атмосфера планеты Нептун
    атмосфера планеты Нептун
    викинг Марс фото
    викинг Марс фото
    фотографии Европы Юпитер
    фотографии Европы Юпитер